C++ Library for Competitive Programming
/*
* @title データ構造/双対セグメント木
*
* verification-helper: PROBLEM https://judge.yosupo.jp/problem/range_affine_point_get
*/
#include <iostream>
#include <utility>
#include <vector>
#include "emthrm/data_structure/dual_segment_tree.hpp"
#include "emthrm/math/modint.hpp"
int main() {
using ModInt = emthrm::MInt<998244353>;
int n, q;
std::cin >> n >> q;
std::vector<ModInt> a(n);
for (ModInt& a_i : a) std::cin >> a_i;
struct M {
using Elem = ModInt;
using OperatorMonoid = std::pair<ModInt, ModInt>;
static OperatorMonoid id() { return {ModInt::raw(1), ModInt::raw(0)}; }
static OperatorMonoid merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return {a.first * b.first, a.second * b.first + b.second};
}
static Elem apply(const Elem& a, const OperatorMonoid& b) {
return a * b.first + b.second;
}
};
emthrm::DualSegmentTree<M> dst(a);
while (q--) {
int type;
std::cin >> type;
if (type == 0) {
int l, r;
ModInt b, c;
std::cin >> l >> r >> b >> c;
dst.apply(l, r, {b, c});
} else if (type == 1) {
int i;
std::cin >> i;
std::cout << dst[i] << '\n';
}
}
return 0;
}
#line 1 "test/data_structure/dual_segment_tree.test.cpp"
/*
* @title データ構造/双対セグメント木
*
* verification-helper: PROBLEM https://judge.yosupo.jp/problem/range_affine_point_get
*/
#include <iostream>
#include <utility>
#include <vector>
#line 1 "include/emthrm/data_structure/dual_segment_tree.hpp"
#include <bit>
#include <concepts>
#include <cstdint>
#include <optional>
#line 10 "include/emthrm/data_structure/dual_segment_tree.hpp"
namespace emthrm {
template <typename T>
requires requires {
typename T::Elem;
typename T::OperatorMonoid;
{T::id()} -> std::same_as<typename T::OperatorMonoid>;
{T::merge(std::declval<typename T::OperatorMonoid>(),
std::declval<typename T::OperatorMonoid>())}
-> std::same_as<typename T::OperatorMonoid>;
{T::apply(std::declval<typename T::Elem>(),
std::declval<typename T::OperatorMonoid>())}
-> std::same_as<typename T::Elem>;
}
struct DualSegmentTree {
using Elem = typename T::Elem;
using OperatorMonoid = typename T::OperatorMonoid;
explicit DualSegmentTree(const std::vector<Elem>& data)
: n(data.size()), height(std::countr_zero(std::bit_ceil(data.size()))),
p2(1 << height), data(data), lazy(p2, T::id()) {}
void set(const int idx, const Elem val) {
propagate_line(idx);
data[idx] = val;
}
void apply(const int idx, const OperatorMonoid val) {
propagate_line(idx);
data[idx] = T::apply(data[idx], val);
}
void apply(int left, int right, const OperatorMonoid val) {
if (right <= left) [[unlikely]] return;
propagate_line(left, std::countr_zero(static_cast<unsigned int>(left)));
propagate_line(right, std::countr_zero(static_cast<unsigned int>(right)));
left += p2;
right += p2;
if (left & 1) {
data[left - p2] = T::apply(data[left - p2], val);
++left;
}
if (right & 1) {
--right;
data[right - p2] = T::apply(data[right - p2], val);
}
for (left >>= 1, right >>= 1; left < right; left >>= 1, right >>= 1) {
if (left & 1) {
lazy[left] = T::merge(lazy[left], val);
++left;
}
if (right & 1) {
--right;
lazy[right] = T::merge(lazy[right], val);
}
}
}
Elem operator[](const int idx) {
propagate_line(idx);
return data[idx];
}
private:
const int n, height, p2;
std::vector<Elem> data;
std::vector<OperatorMonoid> lazy;
void propagate(const int idx) {
if (lazy[idx] == T::id()) return;
const int child = idx << 1;
if (child >= p2) {
if (child - p2 < n) {
data[child - p2] = T::apply(data[child - p2], lazy[idx]);
if (child - p2 + 1 < n) {
data[child - p2 + 1] = T::apply(data[child - p2 + 1], lazy[idx]);
}
}
} else {
lazy[child] = T::merge(lazy[child], lazy[idx]);
lazy[child + 1] = T::merge(lazy[child + 1], lazy[idx]);
}
lazy[idx] = T::id();
}
void propagate_line(const int idx, const int until = 0) {
const int node = idx + p2;
for (int i = height; i > until; --i) {
propagate(node >> i);
}
}
};
namespace monoid {
template <typename T>
struct RangeUpdateQuery {
using Elem = T;
using OperatorMonoid = std::optional<Elem>;
static constexpr OperatorMonoid id() { return std::nullopt; }
static OperatorMonoid merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return b.has_value() ? b : a;
}
static Elem apply(const Elem& a, const OperatorMonoid& b) {
return b.has_value() ? b.value() : a;
}
};
template <typename T>
struct RangeAddQuery {
using Elem = T;
using OperatorMonoid = T;
static constexpr OperatorMonoid id() { return 0; }
static OperatorMonoid merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return a + b;
}
static Elem apply(const Elem& a, const OperatorMonoid& b) { return a + b; }
};
} // namespace monoid
} // namespace emthrm
#line 1 "include/emthrm/math/modint.hpp"
#ifndef ARBITRARY_MODINT
# include <cassert>
#endif
#include <compare>
#line 9 "include/emthrm/math/modint.hpp"
// #include <numeric>
#line 12 "include/emthrm/math/modint.hpp"
namespace emthrm {
#ifndef ARBITRARY_MODINT
template <unsigned int M>
struct MInt {
unsigned int v;
constexpr MInt() : v(0) {}
constexpr MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr MInt raw(const int x) {
MInt x_;
x_.v = x;
return x_;
}
static constexpr int get_mod() { return M; }
static constexpr void set_mod(const int divisor) {
assert(std::cmp_equal(divisor, M));
}
static void init(const int x) {
inv<true>(x);
fact(x);
fact_inv(x);
}
template <bool MEMOIZES = false>
static MInt inv(const int n) {
// assert(0 <= n && n < M && std::gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) return inverse[n];
if constexpr (MEMOIZES) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * raw(M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
if (const int prev = factorial.size(); n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
if (const int prev = f_inv.size(); n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
inv<true>(k);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
constexpr MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
constexpr MInt& operator+=(const MInt& x) {
if ((v += x.v) >= M) v -= M;
return *this;
}
constexpr MInt& operator-=(const MInt& x) {
if ((v += M - x.v) >= M) v -= M;
return *this;
}
constexpr MInt& operator*=(const MInt& x) {
v = (unsigned long long){v} * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
constexpr auto operator<=>(const MInt& x) const = default;
constexpr MInt& operator++() {
if (++v == M) [[unlikely]] v = 0;
return *this;
}
constexpr MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
constexpr MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
constexpr MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
constexpr MInt operator+() const { return *this; }
constexpr MInt operator-() const { return raw(v ? M - v : 0); }
constexpr MInt operator+(const MInt& x) const { return MInt(*this) += x; }
constexpr MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
constexpr MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
#else // ARBITRARY_MODINT
template <int ID>
struct MInt {
unsigned int v;
constexpr MInt() : v(0) {}
MInt(const long long x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {}
static constexpr MInt raw(const int x) {
MInt x_;
x_.v = x;
return x_;
}
static int get_mod() { return mod(); }
static void set_mod(const unsigned int divisor) { mod() = divisor; }
static void init(const int x) {
inv<true>(x);
fact(x);
fact_inv(x);
}
template <bool MEMOIZES = false>
static MInt inv(const int n) {
// assert(0 <= n && n < mod() && std::gcd(x, mod()) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) return inverse[n];
if constexpr (MEMOIZES) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[mod() % i] * raw(mod() / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = mod(); b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
if (const int prev = factorial.size(); n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
if (const int prev = f_inv.size(); n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
inv<true>(k);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
MInt& operator+=(const MInt& x) {
if ((v += x.v) >= mod()) v -= mod();
return *this;
}
MInt& operator-=(const MInt& x) {
if ((v += mod() - x.v) >= mod()) v -= mod();
return *this;
}
MInt& operator*=(const MInt& x) {
v = (unsigned long long){v} * x.v % mod();
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
auto operator<=>(const MInt& x) const = default;
MInt& operator++() {
if (++v == mod()) [[unlikely]] v = 0;
return *this;
}
MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
MInt& operator--() {
v = (v == 0 ? mod() - 1 : v - 1);
return *this;
}
MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
MInt operator+() const { return *this; }
MInt operator-() const { return raw(v ? mod() - v : 0); }
MInt operator+(const MInt& x) const { return MInt(*this) += x; }
MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
private:
static unsigned int& mod() {
static unsigned int divisor = 0;
return divisor;
}
};
#endif // ARBITRARY_MODINT
} // namespace emthrm
#line 13 "test/data_structure/dual_segment_tree.test.cpp"
int main() {
using ModInt = emthrm::MInt<998244353>;
int n, q;
std::cin >> n >> q;
std::vector<ModInt> a(n);
for (ModInt& a_i : a) std::cin >> a_i;
struct M {
using Elem = ModInt;
using OperatorMonoid = std::pair<ModInt, ModInt>;
static OperatorMonoid id() { return {ModInt::raw(1), ModInt::raw(0)}; }
static OperatorMonoid merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return {a.first * b.first, a.second * b.first + b.second};
}
static Elem apply(const Elem& a, const OperatorMonoid& b) {
return a * b.first + b.second;
}
};
emthrm::DualSegmentTree<M> dst(a);
while (q--) {
int type;
std::cin >> type;
if (type == 0) {
int l, r;
ModInt b, c;
std::cin >> l >> r >> b >> c;
dst.apply(l, r, {b, c});
} else if (type == 1) {
int i;
std::cin >> i;
std::cout << dst[i] << '\n';
}
}
return 0;
}