C++ Library for Competitive Programming
/*
* @title グラフ/フロー/マッチング/二部グラフの重み付き最大マッチング
*
* verification-helper: IGNORE
* verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2429
*/
#include <iostream>
#include <string>
#include <vector>
#include "emthrm/graph/flow/matching/weighted_bipartite_matching.hpp"
int main() {
int n;
std::cin >> n;
std::vector<std::vector<int>> w(n, std::vector<int>(n));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
std:: cin >> w[i][j];
}
}
std::vector<std::vector<int>> e(n, std::vector<int>(n));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
std:: cin >> e[i][j];
}
}
std::vector<std::string> f(n);
long long ans = 0;
for (int i = 0; i < n; ++i) {
std::cin >> f[i];
for (int j = 0; j < n; ++j) {
if (f[i][j] == 'o') ans += e[i][j];
}
}
emthrm::WeightedBipartiteMatching<long long>
weighted_bipartite_matching(n, n);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
weighted_bipartite_matching.add_edge(i, j,
f[i][j] == 'o' ? e[i][j] : -w[i][j]);
}
}
std::cout << ans - weighted_bipartite_matching.solve() << '\n';
std::vector<std::string> taro(n, std::string(n, '.'));
const std::vector<int> matching = weighted_bipartite_matching.matching();
for (int i = 0; i < n; ++i) {
taro[i][matching[i]] = 'o';
}
std::vector<int> r, c;
std::vector<std::string> operate;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (f[i][j] != taro[i][j]) {
r.emplace_back(i);
c.emplace_back(j);
operate.emplace_back(f[i][j] == 'o' ? "erase" : "write");
}
}
}
const int cnt = r.size();
std::cout << cnt << '\n';
for (int i = 0; i < cnt; ++i) {
std::cout << r[i] + 1 << ' ' << c[i] + 1 << ' ' << operate[i] << '\n';
}
return 0;
}
#line 1 "test/graph/flow/matching/weighted_bipartite_matching.test.cpp"
/*
* @title グラフ/フロー/マッチング/二部グラフの重み付き最大マッチング
*
* verification-helper: IGNORE
* verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2429
*/
#include <iostream>
#include <string>
#include <vector>
#line 1 "include/emthrm/graph/flow/matching/weighted_bipartite_matching.hpp"
#include <cassert>
#line 6 "include/emthrm/graph/flow/matching/weighted_bipartite_matching.hpp"
#line 1 "include/emthrm/graph/flow/minimum_cost_flow/minimum_cost_s-t-flow.hpp"
#include <algorithm>
#line 6 "include/emthrm/graph/flow/minimum_cost_flow/minimum_cost_s-t-flow.hpp"
#include <functional>
#include <limits>
#include <queue>
#include <utility>
#line 11 "include/emthrm/graph/flow/minimum_cost_flow/minimum_cost_s-t-flow.hpp"
namespace emthrm {
template <typename T, typename U>
struct MinimumCostSTFlow {
struct Edge {
int dst, rev;
T cap;
U cost;
explicit Edge(const int dst, const T cap, const U cost, const int rev)
: dst(dst), rev(rev), cap(cap), cost(cost) {}
};
const U uinf;
std::vector<std::vector<Edge>> graph;
explicit MinimumCostSTFlow(const int n,
const U uinf = std::numeric_limits<U>::max())
: uinf(uinf), graph(n), tinf(std::numeric_limits<T>::max()), n(n),
has_negative_edge(false), prev_v(n, -1), prev_e(n, -1), dist(n),
potential(n, 0) {}
void add_edge(const int src, const int dst, const T cap, const U cost) {
has_negative_edge |= cost < 0;
graph[src].emplace_back(dst, cap, cost, graph[dst].size());
graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1);
}
U solve(const int s, const int t, T flow) {
if (flow == 0) [[unlikely]] return 0;
U res = 0;
has_negative_edge ? bellman_ford(s) : dijkstra(s);
while (true) {
if (dist[t] == uinf) return uinf;
res += calc(s, t, &flow);
if (flow == 0) break;
dijkstra(s);
}
return res;
}
U solve(const int s, const int t) {
U res = 0;
T flow = tinf;
bellman_ford(s);
while (potential[t] < 0 && dist[t] != uinf) {
res += calc(s, t, &flow);
dijkstra(s);
}
return res;
}
std::pair<T, U> minimum_cost_maximum_flow(const int s, const int t,
const T flow) {
if (flow == 0) [[unlikely]] return {0, 0};
T f = flow;
U cost = 0;
has_negative_edge ? bellman_ford(s) : dijkstra(s);
while (dist[t] != uinf) {
cost += calc(s, t, &f);
if (f == 0) break;
dijkstra(s);
}
return {flow - f, cost};
}
private:
const T tinf;
const int n;
bool has_negative_edge;
std::vector<int> prev_v, prev_e;
std::vector<U> dist, potential;
std::priority_queue<std::pair<U, int>, std::vector<std::pair<U, int>>,
std::greater<std::pair<U, int>>> que;
void bellman_ford(const int s) {
std::fill(dist.begin(), dist.end(), uinf);
dist[s] = 0;
bool is_updated = true;
for (int step = 0; step < n && is_updated; ++step) {
is_updated = false;
for (int i = 0; i < n; ++i) {
if (dist[i] == uinf) continue;
for (int j = 0; std::cmp_less(j, graph[i].size()); ++j) {
const Edge& e = graph[i][j];
if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) {
dist[e.dst] = dist[i] + e.cost;
prev_v[e.dst] = i;
prev_e[e.dst] = j;
is_updated = true;
}
}
}
}
assert(!is_updated);
for (int i = 0; i < n; ++i) {
if (dist[i] != uinf) potential[i] += dist[i];
}
}
void dijkstra(const int s) {
std::fill(dist.begin(), dist.end(), uinf);
dist[s] = 0;
que.emplace(0, s);
while (!que.empty()) {
const auto [d, ver] = que.top();
que.pop();
if (dist[ver] < d) continue;
for (int i = 0; std::cmp_less(i, graph[ver].size()); ++i) {
const Edge& e = graph[ver][i];
const U nxt = dist[ver] + e.cost + potential[ver] - potential[e.dst];
if (e.cap > 0 && dist[e.dst] > nxt) {
dist[e.dst] = nxt;
prev_v[e.dst] = ver;
prev_e[e.dst] = i;
que.emplace(dist[e.dst], e.dst);
}
}
}
for (int i = 0; i < n; ++i) {
if (dist[i] != uinf) potential[i] += dist[i];
}
}
U calc(const int s, const int t, T* flow) {
T f = *flow;
for (int v = t; v != s; v = prev_v[v]) {
f = std::min(f, graph[prev_v[v]][prev_e[v]].cap);
}
*flow -= f;
for (int v = t; v != s; v = prev_v[v]) {
Edge& e = graph[prev_v[v]][prev_e[v]];
e.cap -= f;
graph[v][e.rev].cap += f;
}
return potential[t] * f;
}
};
} // namespace emthrm
#line 8 "include/emthrm/graph/flow/matching/weighted_bipartite_matching.hpp"
namespace emthrm {
template <typename T>
struct WeightedBipartiteMatching {
explicit WeightedBipartiteMatching(const int left, const int right)
: is_built(false), left(left), right(right), mcf(left + right + 2) {}
void add_edge(const int src, const int dst, const T cost) {
mcf.add_edge(src, left + dst, 1, -cost);
}
T solve() {
assert(!is_built);
is_built = true;
const int s = left + right, t = left + right + 1;
for (int i = 0; i < left; ++i) {
mcf.add_edge(s, i, 1, 0);
}
for (int i = 0; i < right; ++i) {
mcf.add_edge(left + i, t, 1, 0);
}
return -mcf.minimum_cost_maximum_flow(s, t, left).second;
}
std::vector<int> matching() const {
assert(is_built);
std::vector<int> res(left, -1);
for (int i = 0; i < left; ++i) {
for (const auto& e : mcf.graph[i]) {
if (e.cap == 0 && left <= e.dst && e.dst < left + right) {
res[i] = e.dst - left;
break;
}
}
}
return res;
}
private:
bool is_built;
const int left, right;
MinimumCostSTFlow<int, T> mcf;
};
} // namespace emthrm
#line 13 "test/graph/flow/matching/weighted_bipartite_matching.test.cpp"
int main() {
int n;
std::cin >> n;
std::vector<std::vector<int>> w(n, std::vector<int>(n));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
std:: cin >> w[i][j];
}
}
std::vector<std::vector<int>> e(n, std::vector<int>(n));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
std:: cin >> e[i][j];
}
}
std::vector<std::string> f(n);
long long ans = 0;
for (int i = 0; i < n; ++i) {
std::cin >> f[i];
for (int j = 0; j < n; ++j) {
if (f[i][j] == 'o') ans += e[i][j];
}
}
emthrm::WeightedBipartiteMatching<long long>
weighted_bipartite_matching(n, n);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
weighted_bipartite_matching.add_edge(i, j,
f[i][j] == 'o' ? e[i][j] : -w[i][j]);
}
}
std::cout << ans - weighted_bipartite_matching.solve() << '\n';
std::vector<std::string> taro(n, std::string(n, '.'));
const std::vector<int> matching = weighted_bipartite_matching.matching();
for (int i = 0; i < n; ++i) {
taro[i][matching[i]] = 'o';
}
std::vector<int> r, c;
std::vector<std::string> operate;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (f[i][j] != taro[i][j]) {
r.emplace_back(i);
c.emplace_back(j);
operate.emplace_back(f[i][j] == 'o' ? "erase" : "write");
}
}
}
const int cnt = r.size();
std::cout << cnt << '\n';
for (int i = 0; i < cnt; ++i) {
std::cout << r[i] + 1 << ' ' << c[i] + 1 << ' ' << operate[i] << '\n';
}
return 0;
}