C++ Library for Competitive Programming
/*
* @title グラフ/フロー/最小費用流/最小費用 $s$-$t$-フロー 最短路反復法版(最小費用最大流)
*
* verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1088
*/
#include <algorithm>
#include <iostream>
#include <iterator>
#include <utility>
#include <vector>
#include "emthrm/graph/flow/minimum_cost_flow/minimum_cost_s-t-flow.hpp"
int main() {
struct Train { int x, y, c; };
while (true) {
int n;
std::cin >> n;
if (n == 0) break;
int num = 0;
std::vector<std::vector<Train>> trains(n - 1);
std::vector<std::vector<int>> times(n - 1);
for (int i = 0; i < n - 1; ++i) {
int m;
std::cin >> m;
num += m;
while (m--) {
int x, y, c;
std::cin >> x >> y >> c;
trains[i].emplace_back(Train{x, y, c});
times[i].emplace_back(y);
}
std::sort(times[i].begin(), times[i].end());
times[i].erase(std::unique(times[i].begin(), times[i].end()),
times[i].end());
num += times[i].size() * 2;
}
emthrm::MinimumCostSTFlow<int, long long> minimum_cost_flow(num + 2);
const int s = num, t = num + 1;
for (int i = 0; std::cmp_less(i, trains.front().size()); ++i) {
minimum_cost_flow.add_edge(s, i, 1, 0);
}
int w = 0;
for (int i = 0; i < n - 1; ++i) {
int m = trains[i].size();
for (int j = 0; j < m; ++j) {
const int idx = std::distance(
times[i].begin(),
std::lower_bound(times[i].begin(), times[i].end(), trains[i][j].y));
minimum_cost_flow.add_edge(j + w, idx + w + m, 1, trains[i][j].c);
}
w += m;
m = times[i].size();
for (int j = 0; j < m; ++j) {
minimum_cost_flow.add_edge(j + w, j + w + m, 1, 0);
}
w += m;
if (i + 1 < n - 1) {
for (int j = 0; j < m; ++j) {
for (int k = 0; std::cmp_less(k, trains[i + 1].size()); ++k) {
if (times[i][j] <= trains[i + 1][k].x) {
minimum_cost_flow.add_edge(j + w, k + w + m, 1, 0);
}
}
}
w += m;
}
}
for (int i = num - times.back().size(); i < num; ++i) {
minimum_cost_flow.add_edge(i, t, 1, 0);
}
int g;
std::cin >> g;
const auto [ans_class, ans_fare] =
minimum_cost_flow.minimum_cost_maximum_flow(s, t, g);
std::cout << ans_class << ' ' << ans_fare << '\n';
}
return 0;
}
#line 1 "test/graph/flow/minimum_cost_flow/minimum_cost_s-t-flow.3.test.cpp"
/*
* @title グラフ/フロー/最小費用流/最小費用 $s$-$t$-フロー 最短路反復法版(最小費用最大流)
*
* verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1088
*/
#include <algorithm>
#include <iostream>
#include <iterator>
#include <utility>
#include <vector>
#line 1 "include/emthrm/graph/flow/minimum_cost_flow/minimum_cost_s-t-flow.hpp"
#line 5 "include/emthrm/graph/flow/minimum_cost_flow/minimum_cost_s-t-flow.hpp"
#include <cassert>
#include <functional>
#include <limits>
#include <queue>
#line 11 "include/emthrm/graph/flow/minimum_cost_flow/minimum_cost_s-t-flow.hpp"
namespace emthrm {
template <typename T, typename U>
struct MinimumCostSTFlow {
struct Edge {
int dst, rev;
T cap;
U cost;
explicit Edge(const int dst, const T cap, const U cost, const int rev)
: dst(dst), rev(rev), cap(cap), cost(cost) {}
};
const U uinf;
std::vector<std::vector<Edge>> graph;
explicit MinimumCostSTFlow(const int n,
const U uinf = std::numeric_limits<U>::max())
: uinf(uinf), graph(n), tinf(std::numeric_limits<T>::max()), n(n),
has_negative_edge(false), prev_v(n, -1), prev_e(n, -1), dist(n),
potential(n, 0) {}
void add_edge(const int src, const int dst, const T cap, const U cost) {
has_negative_edge |= cost < 0;
graph[src].emplace_back(dst, cap, cost, graph[dst].size());
graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1);
}
U solve(const int s, const int t, T flow) {
if (flow == 0) [[unlikely]] return 0;
U res = 0;
has_negative_edge ? bellman_ford(s) : dijkstra(s);
while (true) {
if (dist[t] == uinf) return uinf;
res += calc(s, t, &flow);
if (flow == 0) break;
dijkstra(s);
}
return res;
}
U solve(const int s, const int t) {
U res = 0;
T flow = tinf;
bellman_ford(s);
while (potential[t] < 0 && dist[t] != uinf) {
res += calc(s, t, &flow);
dijkstra(s);
}
return res;
}
std::pair<T, U> minimum_cost_maximum_flow(const int s, const int t,
const T flow) {
if (flow == 0) [[unlikely]] return {0, 0};
T f = flow;
U cost = 0;
has_negative_edge ? bellman_ford(s) : dijkstra(s);
while (dist[t] != uinf) {
cost += calc(s, t, &f);
if (f == 0) break;
dijkstra(s);
}
return {flow - f, cost};
}
private:
const T tinf;
const int n;
bool has_negative_edge;
std::vector<int> prev_v, prev_e;
std::vector<U> dist, potential;
std::priority_queue<std::pair<U, int>, std::vector<std::pair<U, int>>,
std::greater<std::pair<U, int>>> que;
void bellman_ford(const int s) {
std::fill(dist.begin(), dist.end(), uinf);
dist[s] = 0;
bool is_updated = true;
for (int step = 0; step < n && is_updated; ++step) {
is_updated = false;
for (int i = 0; i < n; ++i) {
if (dist[i] == uinf) continue;
for (int j = 0; std::cmp_less(j, graph[i].size()); ++j) {
const Edge& e = graph[i][j];
if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) {
dist[e.dst] = dist[i] + e.cost;
prev_v[e.dst] = i;
prev_e[e.dst] = j;
is_updated = true;
}
}
}
}
assert(!is_updated);
for (int i = 0; i < n; ++i) {
if (dist[i] != uinf) potential[i] += dist[i];
}
}
void dijkstra(const int s) {
std::fill(dist.begin(), dist.end(), uinf);
dist[s] = 0;
que.emplace(0, s);
while (!que.empty()) {
const auto [d, ver] = que.top();
que.pop();
if (dist[ver] < d) continue;
for (int i = 0; std::cmp_less(i, graph[ver].size()); ++i) {
const Edge& e = graph[ver][i];
const U nxt = dist[ver] + e.cost + potential[ver] - potential[e.dst];
if (e.cap > 0 && dist[e.dst] > nxt) {
dist[e.dst] = nxt;
prev_v[e.dst] = ver;
prev_e[e.dst] = i;
que.emplace(dist[e.dst], e.dst);
}
}
}
for (int i = 0; i < n; ++i) {
if (dist[i] != uinf) potential[i] += dist[i];
}
}
U calc(const int s, const int t, T* flow) {
T f = *flow;
for (int v = t; v != s; v = prev_v[v]) {
f = std::min(f, graph[prev_v[v]][prev_e[v]].cap);
}
*flow -= f;
for (int v = t; v != s; v = prev_v[v]) {
Edge& e = graph[prev_v[v]][prev_e[v]];
e.cap -= f;
graph[v][e.rev].cap += f;
}
return potential[t] * f;
}
};
} // namespace emthrm
#line 14 "test/graph/flow/minimum_cost_flow/minimum_cost_s-t-flow.3.test.cpp"
int main() {
struct Train { int x, y, c; };
while (true) {
int n;
std::cin >> n;
if (n == 0) break;
int num = 0;
std::vector<std::vector<Train>> trains(n - 1);
std::vector<std::vector<int>> times(n - 1);
for (int i = 0; i < n - 1; ++i) {
int m;
std::cin >> m;
num += m;
while (m--) {
int x, y, c;
std::cin >> x >> y >> c;
trains[i].emplace_back(Train{x, y, c});
times[i].emplace_back(y);
}
std::sort(times[i].begin(), times[i].end());
times[i].erase(std::unique(times[i].begin(), times[i].end()),
times[i].end());
num += times[i].size() * 2;
}
emthrm::MinimumCostSTFlow<int, long long> minimum_cost_flow(num + 2);
const int s = num, t = num + 1;
for (int i = 0; std::cmp_less(i, trains.front().size()); ++i) {
minimum_cost_flow.add_edge(s, i, 1, 0);
}
int w = 0;
for (int i = 0; i < n - 1; ++i) {
int m = trains[i].size();
for (int j = 0; j < m; ++j) {
const int idx = std::distance(
times[i].begin(),
std::lower_bound(times[i].begin(), times[i].end(), trains[i][j].y));
minimum_cost_flow.add_edge(j + w, idx + w + m, 1, trains[i][j].c);
}
w += m;
m = times[i].size();
for (int j = 0; j < m; ++j) {
minimum_cost_flow.add_edge(j + w, j + w + m, 1, 0);
}
w += m;
if (i + 1 < n - 1) {
for (int j = 0; j < m; ++j) {
for (int k = 0; std::cmp_less(k, trains[i + 1].size()); ++k) {
if (times[i][j] <= trains[i + 1][k].x) {
minimum_cost_flow.add_edge(j + w, k + w + m, 1, 0);
}
}
}
w += m;
}
}
for (int i = num - times.back().size(); i < num; ++i) {
minimum_cost_flow.add_edge(i, t, 1, 0);
}
int g;
std::cin >> g;
const auto [ans_class, ans_fare] =
minimum_cost_flow.minimum_cost_maximum_flow(s, t, g);
std::cout << ans_class << ' ' << ans_fare << '\n';
}
return 0;
}