C++ Library for Competitive Programming
/*
* @title 数学/行列/バイナリ行列/逆行列 バイナリ行列版
*
* verification-helper: PROBLEM https://judge.yosupo.jp/problem/inverse_matrix_mod_2
*/
#include <iostream>
#include <string>
#include "emthrm/math/matrix/binary_matrix/binary_matrix.hpp"
#include "emthrm/math/matrix/binary_matrix/inverse_matrix.hpp"
int main() {
constexpr int kMaxN = (1 << 12) * 2;
int n;
std::cin >> n;
emthrm::BinaryMatrix<kMaxN> a(n, n);
for (int i = 0; i < n; ++i) {
std::string a_i;
std::cin >> a_i;
for (int j = 0; j < n; ++j) {
if (a_i[j] == '1') a[i].set(j);
}
}
a = inverse_matrix(a);
if (a.nrow() == 0) {
std::cout << "-1\n";
} else {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
std::cout << a[i][j];
}
std::cout << '\n';
}
}
return 0;
}
#line 1 "test/math/matrix/binary_matrix/inverse_matrix.test.cpp"
/*
* @title 数学/行列/バイナリ行列/逆行列 バイナリ行列版
*
* verification-helper: PROBLEM https://judge.yosupo.jp/problem/inverse_matrix_mod_2
*/
#include <iostream>
#include <string>
#line 1 "include/emthrm/math/matrix/binary_matrix/binary_matrix.hpp"
#include <bitset>
#line 6 "include/emthrm/math/matrix/binary_matrix/binary_matrix.hpp"
#include <vector>
namespace emthrm {
template <int N>
struct BinaryMatrix {
explicit BinaryMatrix(const int m, const int n = N, const bool def = false)
: n(n), data(m, std::bitset<N>(std::string(n, def ? '1' : '0'))) {}
int nrow() const { return data.size(); }
int ncol() const { return n; }
BinaryMatrix pow(long long exponent) const {
BinaryMatrix res(n, n), tmp = *this;
for (int i = 0; i < n; ++i) {
res[i].set(i);
}
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
inline const std::bitset<N>& operator[](const int i) const { return data[i]; }
inline std::bitset<N>& operator[](const int i) { return data[i]; }
BinaryMatrix& operator=(const BinaryMatrix& x) = default;
BinaryMatrix& operator+=(const BinaryMatrix& x) {
const int m = nrow();
for (int i = 0; i < m; ++i) {
data[i] ^= x[i];
}
return *this;
}
BinaryMatrix& operator*=(const BinaryMatrix& x) {
const int m = nrow(), l = x.ncol();
BinaryMatrix t_x(l, n), res(m, l);
for (int i = 0; i < l; ++i) {
for (int j = 0; j < n; ++j) {
t_x[i][j] = x[j][i];
}
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < l; ++j) {
if ((data[i] & t_x[j]).count() & 1) res[i].set(j);
}
}
return *this = res;
}
BinaryMatrix operator+(const BinaryMatrix& x) const {
return BinaryMatrix(*this) += x;
}
BinaryMatrix operator*(const BinaryMatrix& x) const {
return BinaryMatrix(*this) *= x;
}
private:
int n;
std::vector<std::bitset<N>> data;
};
} // namespace emthrm
#line 1 "include/emthrm/math/matrix/binary_matrix/inverse_matrix.hpp"
#include <cassert>
#include <utility>
#line 8 "include/emthrm/math/matrix/binary_matrix/inverse_matrix.hpp"
namespace emthrm {
template <int N>
BinaryMatrix<N> inverse_matrix(const BinaryMatrix<N>& a) {
const int n = a.nrow();
BinaryMatrix<N> b(n, n << 1, 0);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
b[i][j] = a[i][j];
}
b[i][n + i] = 1;
}
for (int col = 0; col < n; ++col) {
int pivot = -1;
for (int row = col; row < n; ++row) {
if (b[row][col]) {
pivot = row;
break;
}
}
if (pivot == -1) return BinaryMatrix<N>(0, 0);
std::swap(b[col], b[pivot]);
for (int row = 0; row < n; ++row) {
if (row != col && b[row][col]) b[row] ^= b[col];
}
}
BinaryMatrix<N> inv(n, n);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
inv[i][j] = b[i][n + j];
}
}
return inv;
}
} // namespace emthrm
#line 12 "test/math/matrix/binary_matrix/inverse_matrix.test.cpp"
int main() {
constexpr int kMaxN = (1 << 12) * 2;
int n;
std::cin >> n;
emthrm::BinaryMatrix<kMaxN> a(n, n);
for (int i = 0; i < n; ++i) {
std::string a_i;
std::cin >> a_i;
for (int j = 0; j < n; ++j) {
if (a_i[j] == '1') a[i].set(j);
}
}
a = inverse_matrix(a);
if (a.nrow() == 0) {
std::cout << "-1\n";
} else {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
std::cout << a[i][j];
}
std::cout << '\n';
}
}
return 0;
}