C++ Library for Competitive Programming
/*
* @title 数学/行列/連立一次方程式
*
* verification-helper: PROBLEM https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2171
* verification-helper: ERROR 1e-8
*/
#include <iomanip>
#include <iostream>
#include <vector>
#include "emthrm/graph/edge.hpp"
#include "emthrm/graph/shortest_path/dijkstra.hpp"
#include "emthrm/math/matrix/linear_equation.hpp"
#include "emthrm/math/matrix/matrix.hpp"
int main() {
while (true) {
int n, s, t;
std::cin >> n >> s >> t;
if (n == 0 && s == 0 && t == 0) break;
--s; --t;
std::vector<int> q(n);
for (int i = 0; i < n; ++i) {
std::cin >> q[i];
}
std::vector<std::vector<emthrm::Edge<int>>> graph(n);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
int a;
std::cin >> a;
if (a > 0) graph[i].emplace_back(i, j, a);
}
}
emthrm::Dijkstra<int> dijkstra(graph);
const std::vector<int> dist = dijkstra.build(t);
if (dist[s] == dijkstra.inf) {
std::cout << "impossible\n";
continue;
}
emthrm::Matrix<int> a(n, n, 0);
std::vector<int> b(n, 0);
for (int i = 0; i < n; ++i) {
if (i == t) {
a[i][i] = 1;
} else {
std::vector<emthrm::Edge<int>> edges;
if (q[i] == 0) {
edges = graph[i];
} else if (q[i] == 1) {
for (const emthrm::Edge<int>& e : graph[i]) {
if (dist[e.dst] + e.cost == dist[i]) edges.emplace_back(e);
}
}
a[i][i] = -edges.size();
for (const emthrm::Edge<int>& e : edges) {
++a[i][e.dst];
b[i] -= e.cost;
}
}
}
std::cout << std::fixed << std::setprecision(8)
<< emthrm::linear_equation(a, b)[s] << '\n';
}
return 0;
}
#line 1 "test/math/matrix/linear_equation.test.cpp"
/*
* @title 数学/行列/連立一次方程式
*
* verification-helper: PROBLEM https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2171
* verification-helper: ERROR 1e-8
*/
#include <iomanip>
#include <iostream>
#include <vector>
#line 1 "include/emthrm/graph/edge.hpp"
/**
* @title 辺
*/
#ifndef EMTHRM_GRAPH_EDGE_HPP_
#define EMTHRM_GRAPH_EDGE_HPP_
#include <compare>
namespace emthrm {
template <typename CostType>
struct Edge {
CostType cost;
int src, dst;
explicit Edge(const int src, const int dst, const CostType cost = 0)
: cost(cost), src(src), dst(dst) {}
auto operator<=>(const Edge& x) const = default;
};
} // namespace emthrm
#endif // EMTHRM_GRAPH_EDGE_HPP_
#line 1 "include/emthrm/graph/shortest_path/dijkstra.hpp"
#include <algorithm>
#include <cassert>
#include <functional>
#include <limits>
#include <queue>
#include <utility>
#line 11 "include/emthrm/graph/shortest_path/dijkstra.hpp"
#line 1 "include/emthrm/graph/edge.hpp"
/**
* @title 辺
*/
#ifndef EMTHRM_GRAPH_EDGE_HPP_
#define EMTHRM_GRAPH_EDGE_HPP_
#include <compare>
namespace emthrm {
template <typename CostType>
struct Edge {
CostType cost;
int src, dst;
explicit Edge(const int src, const int dst, const CostType cost = 0)
: cost(cost), src(src), dst(dst) {}
auto operator<=>(const Edge& x) const = default;
};
} // namespace emthrm
#endif // EMTHRM_GRAPH_EDGE_HPP_
#line 13 "include/emthrm/graph/shortest_path/dijkstra.hpp"
namespace emthrm {
template <typename CostType>
struct Dijkstra {
const CostType inf;
Dijkstra(const std::vector<std::vector<Edge<CostType>>>& graph,
const CostType inf = std::numeric_limits<CostType>::max())
: inf(inf), is_built(false), graph(graph) {}
std::vector<CostType> build(const int s) {
is_built = true;
const int n = graph.size();
std::vector<CostType> dist(n, inf);
dist[s] = 0;
prev.assign(n, -1);
std::priority_queue<std::pair<CostType, int>,
std::vector<std::pair<CostType, int>>,
std::greater<std::pair<CostType, int>>> que;
que.emplace(0, s);
while (!que.empty()) {
const auto [d, ver] = que.top();
que.pop();
if (d > dist[ver]) continue;
for (const Edge<CostType>& e : graph[ver]) {
if (dist[ver] + e.cost < dist[e.dst]) {
dist[e.dst] = dist[ver] + e.cost;
prev[e.dst] = ver;
que.emplace(dist[e.dst], e.dst);
}
}
}
return dist;
}
std::vector<int> build_path(int t) const {
assert(is_built);
std::vector<int> res;
for (; t != -1; t = prev[t]) {
res.emplace_back(t);
}
std::reverse(res.begin(), res.end());
return res;
}
private:
bool is_built;
std::vector<int> prev;
std::vector<std::vector<Edge<CostType>>> graph;
};
} // namespace emthrm
#line 1 "include/emthrm/math/matrix/linear_equation.hpp"
#line 5 "include/emthrm/math/matrix/linear_equation.hpp"
#include <cmath>
#line 7 "include/emthrm/math/matrix/linear_equation.hpp"
#line 1 "include/emthrm/math/matrix/gauss_jordan.hpp"
#line 5 "include/emthrm/math/matrix/gauss_jordan.hpp"
#line 1 "include/emthrm/math/matrix/matrix.hpp"
#line 5 "include/emthrm/math/matrix/matrix.hpp"
namespace emthrm {
template <typename T>
struct Matrix {
explicit Matrix(const int m, const int n, const T def = 0)
: data(m, std::vector<T>(n, def)) {}
int nrow() const { return data.size(); }
int ncol() const { return data.empty() ? 0 : data.front().size(); }
Matrix pow(long long exponent) const {
const int n = nrow();
Matrix<T> res(n, n, 0), tmp = *this;
for (int i = 0; i < n; ++i) {
res[i][i] = 1;
}
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
inline const std::vector<T>& operator[](const int i) const { return data[i]; }
inline std::vector<T>& operator[](const int i) { return data[i]; }
Matrix& operator=(const Matrix& x) = default;
Matrix& operator+=(const Matrix& x) {
const int m = nrow(), n = ncol();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
data[i][j] += x[i][j];
}
}
return *this;
}
Matrix& operator-=(const Matrix& x) {
const int m = nrow(), n = ncol();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
data[i][j] -= x[i][j];
}
}
return *this;
}
Matrix& operator*=(const Matrix& x) {
const int m = nrow(), l = ncol(), n = x.ncol();
std::vector<std::vector<T>> res(m, std::vector<T>(n, 0));
for (int i = 0; i < m; ++i) {
for (int k = 0; k < l; ++k) {
for (int j = 0; j < n; ++j) {
res[i][j] += data[i][k] * x[k][j];
}
}
}
data.swap(res);
return *this;
}
Matrix operator+(const Matrix& x) const { return Matrix(*this) += x; }
Matrix operator-(const Matrix& x) const { return Matrix(*this) -= x; }
Matrix operator*(const Matrix& x) const { return Matrix(*this) *= x; }
private:
std::vector<std::vector<T>> data;
};
} // namespace emthrm
#line 7 "include/emthrm/math/matrix/gauss_jordan.hpp"
namespace emthrm {
template <bool IS_EXTENDED = false, typename T>
int gauss_jordan(Matrix<T>* a, const T eps = 1e-8) {
const int m = a->nrow(), n = a->ncol();
int rank = 0;
for (int col = 0; col < (IS_EXTENDED ? n - 1 : n); ++col) {
int pivot = -1;
T mx = eps;
for (int row = rank; row < m; ++row) {
const T abs = ((*a)[row][col] < 0 ? -(*a)[row][col] : (*a)[row][col]);
if (abs > mx) {
pivot = row;
mx = abs;
}
}
if (pivot == -1) continue;
std::swap((*a)[rank], (*a)[pivot]);
T tmp = (*a)[rank][col];
for (int col2 = 0; col2 < n; ++col2) {
(*a)[rank][col2] /= tmp;
}
for (int row = 0; row < m; ++row) {
if (row != rank &&
((*a)[row][col] < 0 ? -(*a)[row][col] : (*a)[row][col]) > eps) {
tmp = (*a)[row][col];
for (int col2 = 0; col2 < n; ++col2) {
(*a)[row][col2] -= (*a)[rank][col2] * tmp;
}
}
}
++rank;
}
return rank;
}
} // namespace emthrm
#line 10 "include/emthrm/math/matrix/linear_equation.hpp"
namespace emthrm {
template <typename T, typename U = double>
std::vector<U> linear_equation(const Matrix<T>& a, const std::vector<T>& b,
const U eps = 1e-8) {
const int m = a.nrow(), n = a.ncol();
Matrix<U> c(m, n + 1);
for (int i = 0; i < m; ++i) {
std::copy(a[i].begin(), a[i].end(), c[i].begin());
c[i].back() = b[i];
}
const int rank = gauss_jordan<true>(&c, eps);
for (int row = rank; row < m; ++row) {
if ((c[row].back() < 0 ? -c[row].back() : c[row].back()) > eps) {
return std::vector<U>{};
}
}
std::vector<U> res(n, 0);
for (int i = 0, j = 0; i < rank; ++i) {
while ((c[i][j] < 0 ? -c[i][j] : c[i][j]) <= eps) ++j;
res[j++] = c[i].back();
}
return res;
}
} // namespace emthrm
#line 16 "test/math/matrix/linear_equation.test.cpp"
int main() {
while (true) {
int n, s, t;
std::cin >> n >> s >> t;
if (n == 0 && s == 0 && t == 0) break;
--s; --t;
std::vector<int> q(n);
for (int i = 0; i < n; ++i) {
std::cin >> q[i];
}
std::vector<std::vector<emthrm::Edge<int>>> graph(n);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
int a;
std::cin >> a;
if (a > 0) graph[i].emplace_back(i, j, a);
}
}
emthrm::Dijkstra<int> dijkstra(graph);
const std::vector<int> dist = dijkstra.build(t);
if (dist[s] == dijkstra.inf) {
std::cout << "impossible\n";
continue;
}
emthrm::Matrix<int> a(n, n, 0);
std::vector<int> b(n, 0);
for (int i = 0; i < n; ++i) {
if (i == t) {
a[i][i] = 1;
} else {
std::vector<emthrm::Edge<int>> edges;
if (q[i] == 0) {
edges = graph[i];
} else if (q[i] == 1) {
for (const emthrm::Edge<int>& e : graph[i]) {
if (dist[e.dst] + e.cost == dist[i]) edges.emplace_back(e);
}
}
a[i][i] = -edges.size();
for (const emthrm::Edge<int>& e : edges) {
++a[i][e.dst];
b[i] -= e.cost;
}
}
}
std::cout << std::fixed << std::setprecision(8)
<< emthrm::linear_equation(a, b)[s] << '\n';
}
return 0;
}