C++ Library for Competitive Programming
#include "emthrm/math/matrix/linear_equation.hpp"
$O(M^2 N)$
名前 | 戻り値 |
---|---|
template <typename T, typename U = double> std::vector<U> linear_equation(const Matrix<T>& a, const std::vector<T>& b, const U eps = 1e-8);
|
$A \boldsymbol{x} = \boldsymbol{b}$ を満たす $\boldsymbol{x}$。ただし解なしのときは空配列を返す。 |
https://onlinejudge.u-aizu.ac.jp/solutions/problem/2171/review/5899058/emthrm/C++17
#ifndef EMTHRM_MATH_MATRIX_LINEAR_EQUATION_HPP_
#define EMTHRM_MATH_MATRIX_LINEAR_EQUATION_HPP_
#include <algorithm>
#include <cmath>
#include <vector>
#include "emthrm/math/matrix/gauss_jordan.hpp"
#include "emthrm/math/matrix/matrix.hpp"
namespace emthrm {
template <typename T, typename U = double>
std::vector<U> linear_equation(const Matrix<T>& a, const std::vector<T>& b,
const U eps = 1e-8) {
const int m = a.nrow(), n = a.ncol();
Matrix<U> c(m, n + 1);
for (int i = 0; i < m; ++i) {
std::copy(a[i].begin(), a[i].end(), c[i].begin());
c[i].back() = b[i];
}
const int rank = gauss_jordan<true>(&c, eps);
for (int row = rank; row < m; ++row) {
if ((c[row].back() < 0 ? -c[row].back() : c[row].back()) > eps) {
return std::vector<U>{};
}
}
std::vector<U> res(n, 0);
for (int i = 0, j = 0; i < rank; ++i) {
while ((c[i][j] < 0 ? -c[i][j] : c[i][j]) <= eps) ++j;
res[j++] = c[i].back();
}
return res;
}
} // namespace emthrm
#endif // EMTHRM_MATH_MATRIX_LINEAR_EQUATION_HPP_
#line 1 "include/emthrm/math/matrix/linear_equation.hpp"
#include <algorithm>
#include <cmath>
#include <vector>
#line 1 "include/emthrm/math/matrix/gauss_jordan.hpp"
#include <utility>
#line 1 "include/emthrm/math/matrix/matrix.hpp"
#line 5 "include/emthrm/math/matrix/matrix.hpp"
namespace emthrm {
template <typename T>
struct Matrix {
explicit Matrix(const int m, const int n, const T def = 0)
: data(m, std::vector<T>(n, def)) {}
int nrow() const { return data.size(); }
int ncol() const { return data.empty() ? 0 : data.front().size(); }
Matrix pow(long long exponent) const {
const int n = nrow();
Matrix<T> res(n, n, 0), tmp = *this;
for (int i = 0; i < n; ++i) {
res[i][i] = 1;
}
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
inline const std::vector<T>& operator[](const int i) const { return data[i]; }
inline std::vector<T>& operator[](const int i) { return data[i]; }
Matrix& operator=(const Matrix& x) = default;
Matrix& operator+=(const Matrix& x) {
const int m = nrow(), n = ncol();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
data[i][j] += x[i][j];
}
}
return *this;
}
Matrix& operator-=(const Matrix& x) {
const int m = nrow(), n = ncol();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
data[i][j] -= x[i][j];
}
}
return *this;
}
Matrix& operator*=(const Matrix& x) {
const int m = nrow(), l = ncol(), n = x.ncol();
std::vector<std::vector<T>> res(m, std::vector<T>(n, 0));
for (int i = 0; i < m; ++i) {
for (int k = 0; k < l; ++k) {
for (int j = 0; j < n; ++j) {
res[i][j] += data[i][k] * x[k][j];
}
}
}
data.swap(res);
return *this;
}
Matrix operator+(const Matrix& x) const { return Matrix(*this) += x; }
Matrix operator-(const Matrix& x) const { return Matrix(*this) -= x; }
Matrix operator*(const Matrix& x) const { return Matrix(*this) *= x; }
private:
std::vector<std::vector<T>> data;
};
} // namespace emthrm
#line 7 "include/emthrm/math/matrix/gauss_jordan.hpp"
namespace emthrm {
template <bool IS_EXTENDED = false, typename T>
int gauss_jordan(Matrix<T>* a, const T eps = 1e-8) {
const int m = a->nrow(), n = a->ncol();
int rank = 0;
for (int col = 0; col < (IS_EXTENDED ? n - 1 : n); ++col) {
int pivot = -1;
T mx = eps;
for (int row = rank; row < m; ++row) {
const T abs = ((*a)[row][col] < 0 ? -(*a)[row][col] : (*a)[row][col]);
if (abs > mx) {
pivot = row;
mx = abs;
}
}
if (pivot == -1) continue;
std::swap((*a)[rank], (*a)[pivot]);
T tmp = (*a)[rank][col];
for (int col2 = 0; col2 < n; ++col2) {
(*a)[rank][col2] /= tmp;
}
for (int row = 0; row < m; ++row) {
if (row != rank &&
((*a)[row][col] < 0 ? -(*a)[row][col] : (*a)[row][col]) > eps) {
tmp = (*a)[row][col];
for (int col2 = 0; col2 < n; ++col2) {
(*a)[row][col2] -= (*a)[rank][col2] * tmp;
}
}
}
++rank;
}
return rank;
}
} // namespace emthrm
#line 10 "include/emthrm/math/matrix/linear_equation.hpp"
namespace emthrm {
template <typename T, typename U = double>
std::vector<U> linear_equation(const Matrix<T>& a, const std::vector<T>& b,
const U eps = 1e-8) {
const int m = a.nrow(), n = a.ncol();
Matrix<U> c(m, n + 1);
for (int i = 0; i < m; ++i) {
std::copy(a[i].begin(), a[i].end(), c[i].begin());
c[i].back() = b[i];
}
const int rank = gauss_jordan<true>(&c, eps);
for (int row = rank; row < m; ++row) {
if ((c[row].back() < 0 ? -c[row].back() : c[row].back()) > eps) {
return std::vector<U>{};
}
}
std::vector<U> res(n, 0);
for (int i = 0, j = 0; i < rank; ++i) {
while ((c[i][j] < 0 ? -c[i][j] : c[i][j]) <= eps) ++j;
res[j++] = c[i].back();
}
return res;
}
} // namespace emthrm